Foldit is a revolutionary new computer game enabling you to contribute to important scientific research.
What big problems is this game tackling?
- Protein structure prediction: As described above, knowing the structure of a protein is key to understanding how it works and to targeting it with drugs. A small proteins can consist of 100 amino acids, while some human proteins can be huge (1000 amino acids). The number of different ways even a small protein can fold is astronomical because there are so many degrees of freedom. Figuring out which of the many, many possible structures is the best one is regarded as one of the hardest problems in biology today and current methods take a lot of money and time, even for computers. Foldit attempts to predict the structure of a protein by taking advantage of humans' puzzle-solving intuitions and having people play competitively to fold the best proteins.
- Protein design: Since proteins are part of so many diseases, they can also be part of the cure. Players can design brand new proteins that could help prevent or treat important diseases.
- HIV / AIDS: The HIV virus is made up largely of proteins, and once inside a cell it creates other proteins to help itself reproduce. HIV-1 protease and reverse transcriptase are two proteins made by the HIV virus that help it infect the body and replicate itself. HIV-1 protease cuts the "polyprotein" made by the replicating virus into the functional pieces it needs. Reverse transcriptase converts HIV's genes from RNA into a form its host understands, DNA. Both proteins are critical for the virus to replicate inside the body, and both are targeted by anti-HIV drugs. This is an example of a disease producing proteins that do not occur naturally in the body to help it attack our cells.
- Cancer: Cancer is very different from HIV in that it's usually our own proteins to blame, instead of proteins from an outside invader. Cancer arises from the uncontrolled growth of cells in some part of our bodies, such as the lung, breast, or skin. Ordinarily, there are systems of proteins that limit cell growth, but they may be damaged by things like UV rays from the sun or chemicals from cigarette smoke. But other proteins, like p53 tumor suppressor, normally recognize the damage and stop the cell from becoming cancerous -- unless they too are damaged. In fact, damage to the gene for p53 occurs in about half of human cancers (together with damage to various other genes).
- Alzheimer's: In some ways, Alzheimer's is the disease most directly caused by proteins. A protein called amyloid-beta precursor protein is a normal part of healthy, functioning nerve cells in the brain. But to do its job, it gets cut into two pieces, leaving behind a little scrap from the middle -- amyloid-beta peptide. Many copies of this peptide (short protein segment) can come together to form clumps of protein in the brain. Although many things about Alzheimer's are still not understood, it is thought that these clumps of protein are a major part of the disease.
Proteins are found in all living things, including plants. Certain types of plants are grown and converted to biofuel, but the conversion process is not as fast and efficient as it could be. A critical step in turning plants into fuel is breaking down the plant material, which is currently done by microbial enzymes (proteins) called "cellulases". Perhaps we can find new proteins to do it better.
Can humans really help computers fold proteins?
We’re collecting data to find out if humans' pattern-recognition and puzzle-solving abilities make them more efficient than existing computer programs at pattern-folding tasks. If this turns out to be true, we can then teach human strategies to computers and fold proteins faster than ever! Opinion? It's quite fun, easy to use interface, mind challenging. Though it frustrates me sometimes. And gaming actually contributes to science! Definitely a must-play for you puzzle-maniacs out there!
Wow, where did you learn all this medical stuff?
ReplyDelete